Discovering Highly Informative Feature Sets from Data Streams
نویسندگان
چکیده
How to select interesting feature sets from data streams is a new and important research topic in which there are three major challenges. First of all, instead of discovering features individually and independently, we are interested in comprehensively selecting a subset of features whose joint importance or weight is the highest. Secondly, we are concerned with the problem of selecting feature sets over dynamic, large and online data streams which are only partly available when we are selecting the features. This problem distinguishes itself over the data streams from the ones on the static data which is completely available before the feature selection. Finally, data streams may evolve over time, requiring an online feature selection technique which can capture and adapt to such changes. We introduce the problem of online feature selection over data streams and we provide a heuristic solution. We also demonstrate the effectiveness and efficiency of our method through experiments on real-world mobile web usage data.
منابع مشابه
Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملCombined Mining Approach to Generate Patterns for Complex Data
In Data mining applications, which often involve complex data like multiple heterogeneous data sources, user preferences, decision-making actions and business impacts etc., the complete useful information cannot be obtained by using single data mining method in the form of informative patterns as that would consume more time and space, if and only if it is possible to join large relevant data s...
متن کاملFeature Selection for Highly Skewed Sentiment Analysis Tasks
Sentiment analysis generally uses large feature sets based on a bag-of-words approach, which results in a situation where individual features are not very informative. In addition, many data sets tend to be heavily skewed. We approach this combination of challenges by investigating feature selection in order to reduce the large number of features to those that are discriminative. We examine the...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کامل